
Cognitive Computation (2016) 8:555
The final publication is available at Springer
via http://dx.doi.org/10.1007/s12559-015-9378-0

Learning the semantics of notational systems with a
semiotic cognitive automaton

Valerio Targon, European Patent Office
The Hague, The Netherlands

Abstract Through semiotic modelling, a system can retrieve and manipulate
its own representational formats to interpret a series of observations; this is
in contrast to information processing approaches that require representational
formats to be specified beforehand and thus limit the semantic properties that
the system can experience. Our semiotic cognitive automaton is driven only by
the observations it makes and therefore operates based on grounded symbols.

A best-case scenario for our automaton involves observations that are uni-
vocally interpreted - i.e., distinct observation symbols - and that make refer-
ence to a reality characterised by “hard constraints”. Arithmetic offers such a
scenario. The gap between syntax and semantics is also subtle in the case of
calculations.

Our automaton starts without any a priori knowledge of mathematical
formalisms and not only learns the syntactical rules by which arithmetic op-
erations are solved but also reveals the true meaning of numbers by means of
second-order reasoning.

Keywords symbol grounding problem · semiotic modelling · second-order
reasoning · extended correlation · desmogram · abductive reasoning

1 Introduction

A controversy has arisen in cognitive science concerning the possible ability
of a symbol system to reason and understand. The physical symbol system
hypothesis, attributed to Newell and Simon [1], states that “a physical sym-
bol system [such as a digital computer, for example] has the necessary and
sufficient means for intelligent actions”, implying that a symbol-processing
program could make a computer capable of understanding (understanding rep-
resents a prerequisite for acting intelligently and is the scope of this article).

The views expressed in this article reflect my personal opinion and not that of the EPO

E-mail: valerio.targon@asp-poli.it

2 Valerio Targon

Assuming, in an artificial intelligence program, operating according to some
formal semantics, far more understanding and causality than is warranted is
a fallacy of the human mind, which has been coined the “ELIZA effect” [2].

Searle [3] considers that computers cannot be said to understand because
they manipulate formal, meaningless symbols. These symbols exist only in a
conventional relationship with their referents, i.e., their meanings are parasitic
in the minds of the programmer and of the interpreter of the computer output,
where they stand for objects in the world. To challenge the assumption that a
symbol system that exhibits some intelligent behaviour actually understands
its symbols and its own manipulation of them, Searle proposes the thought
experiment of the Chinese room to illustrate that taking in symbols, process-
ing these symbols based on rules, and outputting other symbols as directed by
said rules and in accordance with the input tokens does not require any under-
standing of the meaning of the symbols by the computer. Objects in the world
are beyond the scope of the computer because “programs are not machines”,
i.e., they are not subject to causality and cannot perform any actions.

Harnad [4] extends Searle’s analysis by introducing the symbol grounding
problem, according to which an intelligent agent should own the meaning of
the symbols with which it operates (otherwise, no imagined action could be
actually executed by the agent). Harnad proposes to ground symbolic repre-
sentations in behavioural interactions with the environment, thereby empha-
sising the role of embodiment, and through the use of artificial neural networks
(more recently, sub-symbolic/symbolic neural networks have been advocated
[5]). This proposal amounts to a theory of “bottom-up” symbol grounding, re-
quiring sensorimotor capabilities, direct experience of the world and the ability
to associate symbols to sub-symbolic processes, e.g., through categorical rep-
resentation [4] (i.e., a program is insufficient). However, nothing warrants the
conclusion that symbols thus grounded in sensory perception of reality hold
an intrinsic meaning for the system.

In the following, we posit the symbol grounding problem in its most general
relation to the problem of meaning: how symbols inside an agent autonomously
obtain their meaning and what meaning is. Even without any interaction with
the environment, a program can be built around “symbolic experience” [6],
which cannot be reduced to “dictionary-go-round” [4] but rather is equivalent
to “getting meaning out of meaninglessness”.

Computers, such as Searle’s Chinese room, accept input icons and gener-
ate output icons. A system that is acting purely as a syntactic manipulator
of icons or icon sequences cannot achieve intelligence, because “syntax is not
sufficient for semantics” [3]. Let us consider a pocket calculator: it is a symbol
system that behaves in an intelligent manner but holds no understanding of
the symbols it manipulates, which are extrinsic, ungrounded and meaningless
to it [7]. It cannot relate the 7-key or the 7-display to a concept of 7, although
it has an internal representation of numbers, including 7. The understanding
of these icons as representations and their meaningful interpretation in a given
context require acts of human semiosis [8]. An interpretation occurs when an
internal representation of an object is evoked, starting from input data, or from

The semiotic cognitive automaton 3

a previously identified representation. The source of information originating
the interpretation is called a sign and performing semiosis means extracting
meanings. A symbol system such as the physical symbol system described by
Newell and Simon [1] is not a semiotic system [9]. A program following a se-
quence of instructions does not have any possibility of escaping the internalist
trap [10], but an automaton following a certain sequence of instructions can
simulate semiosis [11].

Artificial semiosis should not be restricted only to machines with robotic
capabilities, such as Meystel’s “semiotic automaton” [12] or, more recently,
the robots proposed by Vogt that interact in language games and construct
“semiotic symbols” from scratch [13].

We propose an automaton that is capable, with no a priori knowledge, of
receiving symbols as inputs and elaborating upon them to produce an evolving
collection of semiotic symbols as an output. We suggest that symbols of formal
notational systems (e.g., words in a language, numbers in mathematics) can
receive meaning through being grounded in internal representations, each of
them just a portion of the large internal reality of an agent, with said meaning
residing in the evolving relations among the fragments of this inner world.
First, the automaton creates from scratch certain representational structures
(i.e., semiotic symbols, which are intrinsically grounded as a result of their
semiotic definition; see the following section). Then, to provide the automaton
with an experience, we require it to have inductive (grounded) access to cer-
tain abstract concepts, such as time, which cannot be sensed directly through
the senses, and quantity, which is independent of any concrete object. Certain
of the symbol structures generated are then discovered, through an inductive
learning process, to be capable of predicting and explaining a process observed
by the automaton. These symbols receive further meaning as the cognitive au-
tomaton connects them to a portion of its internal reality, i.e., to internal
and autonomously discovered constraints, quantified through successful pre-
diction attempts over time. We say that these semiotic symbols are grounded
in a cognitive manner. The automaton’s process of symbol generation should
be continuous and overproducing (only a fraction of the generated symbols
may receive further meaning during processing). A method of unsupervised,
cumulative symbol generation is offered by semiotic modelling [14]. Semiotic
cognitive grounding is possible in all situations in which feedback control can
be employed in connectionist learning and artificial neural networks, although
with both a qualitative and a quantitative difference. The qualitative differ-
ence is that neural networks are based on nonsymbolic functions and can in
no way be interpreted through semantics. Furthermore, cognitive grounding is
not limited to situations that require the matching of an input with an output
but rather can address a multitude of qualitatively different processes and can
focus, for example, on the synthetic power of expression of the symbols or on
their hierarchical organisation.

Understanding can be verified - beyond subjectivity - through behavioural
tests demonstrating whether an agent can recognise, describe and use all of the
entities to which its symbols refer (and, at a high level of abstraction, whether

4 Valerio Targon

it can perform analysis, synthesis and evaluation of said entities, as done by
human learners, according to Bloom’s taxonomy of the cognitive domain [15]).
Our prototype semiotic cognitive automaton is faced with the task of learning
arithmetic in response to a specific input, i.e., number sentences in the form of
arithmetic operations. Considering the case of arithmetic operations simplifies
the input model for the automaton: there exists simply a set of distinct sym-
bols, and no categorical representation [4] is needed. The automaton is not
programmed to perform arithmetic operations and does not implement an al-
gorithm targeted to learn arithmetic; it is a system initialised with no a priori
knowledge that solves the problem of learning per se. It receives symbols com-
prising ciphers and operational signs and employs the regularities of arithmetic
operations to organise these symbols and construct higher-level ones until it
learns how to solve any arithmetic operation, turning itself into a “semiotic”
pocket calculator. By contrast, compare our automaton to an artificial neu-
ral network solving arithmetic operations (one could have a design for such
a neural network that provides an exact solution [16], or one could design a
feed-forward neural network and train it to learn arithmetic operations [17]).
Neural networks are typically referred to as black boxes. How can we assess
the level of understanding attained by our artificial learning system instead?
It could pass a test in the form “153+298=”, but what about a subtler one in
the form “4;7;10;13;”?

A “semiotic” pocket calculator seems to capture the semantic notion of cal-
culation solely in terms of syntactical symbol manipulation, i.e., typographical
rules operating on strings of symbols, without any connection to the meanings
of the numbers (see also Hofstadter’s specification of a syntactical pocket cal-
culator [18]). However, semiotic cognitive grounding also enables second-order
reasoning, such that the automaton assigns another meaning to the symbols it
receives and manipulates. Such meanings, by which the symbols become more
than simple placeholders, are based on the ability of the automaton to observe
and reason about its own structure. The automaton can establish a connection
between the symbols of its input and its internal processes and representations,
which it must consider to be as real as the input it observes. In the case of
the “semiotic” pocket calculator, this connection is established between the
ciphers and an ordering that the automaton has constructed, and it reveals
the meaning of the ciphers. It is then possible for the automaton to interpret
external structures and symbols based on its own inner structuredness. One
might be tempted to claim that learning arithmetic is possible because the
automaton already possesses an internal mathematical reality, being based on
an algorithm; however, second-order reasoning is instead grounded in the ab-
stract concepts of time and quantity, which are inductively available to the
automaton (making it, in this sense, more a machine than a program), and
representations of objects, categories and concepts may all equally become
subjects of second-order reasoning.

Recent work in cognitive computing has begun to address the theoretical
possibility that a machine can attain a conscious state (based on non-abstract
properties of its physical system implementation [19]) and that it can use

The semiotic cognitive automaton 5

its input/output observations to learn a model of itself (based on a machine
learning algorithm with strong learning biases [20]), capabilities that clearly
go beyond the level of brute input and output, i.e., beyond first order.

The proposed semiotic cognitive automaton could be applied to any prob-
lem involving a codified input, the most notable example being an unstruc-
tured or partially structured text. Whereas the theory of “bottom-up” symbol
grounding requires a sensory interface to connect the system to the outside
world, semiotic cognitive grounding is not subject to any such requirement
for the assignment of meaning to symbols (in particular, the meaning of num-
bers is derived solely from their relations to one another, without reference to
physical quantities, and arithmetic operations are regarded as actions taken
on numbers that result in changes to these numbers, where the numbers being
changed are purely conceptual entities). It would be incorrect to assert that
the semiotic cognitive automaton is disembodied ; this term should be reserved
for traditional artificial intelligence systems that use “symbols” as labels for
objects in the outside world and treat them in a manner independent of any
experience, solely in accordance with formal rules [21]. The semiotic cognitive
automaton behaves in accordance with its experience, i.e., it uses - subject to
its limitations - all of the information it receives as inputs for processing. To
it, the meanings of symbols reside in the relations among them, rather than
being assigned arbitrarily by an outside observer. However, because of the
fundamental difference between the perspectives of an embodied agent (e.g., a
robot, or even a human, interacting with the environment) and of an automa-
ton such as ours, the reasoning performed by the two types of systems about
the same input may often differ.

2 The structure of the semiotic cognitive automaton

At the beginning of the learning process, the semiotic cognitive automaton is
capable only of recognising base symbols, i.e., it is able to discriminate that a
given symbol (e.g., perhaps an ASCII character, but also perhaps an indicator
of a value on a multi-level scale, or the suit and rank of one of a set of playing
cards, or a Chinese ideogram), and not another (ASCII character, or indi-
cator, or playing card, or Chinese ideogram, respectively), occurs at certain
positions in an input. We do not associate any predefined representations with
the input symbols but rather have the automaton perform syntagmatic and
paradigmatic analysis of the input. These terms are drawn from the field of
linguistics; in language, following de Saussure, meaning is produced through
paradigmatic and syntagmatic systems [22]. For example, in a sentence “a
dog bites a man”, “dog” is chosen from among a number of words, such as
“spider”, “snake”, and so on, that could have filled the same slot based on
the paradigmatic system, i.e., could be substituted one for another without
disturbing the syntax of the sentence. Moreover, both the sentences “a dog
bites a man” and “a man bites a dog” consist of the same words. However, the
meanings of the two sentences are different because the words that compose

6 Valerio Targon

the sentences are arranged differently based on the syntagmatic system, i.e.,
their words are combined in different specific orders in accordance with gram-
matical rules. More generally, (i) syntagmatic analysis refers to a synchronic
perspective and is concerned with “horizontal relations” based on combina-
tion, e.g., concatenation and co-occurrence; (ii) paradigmatic analysis refers
to a diachronic perspective and is concerned with “vertical relations”, i.e.,
paradigmatic alternatives governed by the principle of selection, or choice.

Our automaton

– extracts syntagmatic relations from its input,
– reveals the paradigms of the syntagms, and
– implements an iterative procedure: once a paradigm is found, it becomes a

new symbol on which syntagmatic and paradigmatic analysis is performed.

The automaton then continually creates internal constraints to explain the
coexistence of the symbols that it generates such that its inner world grows in
abundance.

2.1 Relations managed by the semiotic cognitive automaton

The semiotic cognitive automaton receives a concatenation of discrete symbols
as an input. These symbols may be concatenated in space or in time; there is
an effective difference between the two only if we assume that the automaton
has finite memory. Let us suppose that the automaton has access to its entire
input at any time. In analogy with computational linguistics, we refer to the
input as the corpus.

Let A denote the alphabet that contains all symbols occurring in the cor-
pus. For each symbol i ∈ A, the empirical probability of occurrence p(i) can
be computed as follows:

p(i) =
#(i)

N
, (1)

where #(i) returns the number of occurrences of the specified symbol over the
entire corpus and N is the size of the corpus in symbols.

Any two adjacent symbols in the corpus exist in a binary relationship of
precedence/subsequence. The number of occurrences of symbol i immediately
preceding symbol j - or, equivalently, the number of occurrences of symbol j
immediately following symbol i - is denoted by #(i, j), where (i, j) represents
a digram. n-grams extend the notion of a digram.

However, n-grams can represent only a limited set of relations. To achieve
greater freedom in analysing relations in the corpus, we adopt regular expres-
sions instead of n-grams. n-grams can be regarded as a special case of regular
expressions, namely, literals. We use conventional Perl notation for regular

expressions [23]. In Perl notation, a digram is represented as ij . Additional

relations that can be represented include exact k-hop precedence, which is de-

noted by i.{k}j , with the value k enclosed in curly brackets, and maximal

k-hop precedence, which is denoted by i.{0,k}j .

The semiotic cognitive automaton 7

Given a regular expression g, #(g) can be computed either as the number
of overlapping matches in the corpus or as the number of non-overlapping left-
most shortest matches. Different rules give rise to different computations of the
occurrence probability p(g). In the following, we employ the non-overlapping
leftmost shortest-match rule.

Before computing the number of occurrences of a given regular expression,
its a priori probability of occurrence can be derived through deductive reason-
ing if there exist two regular expressions, f and g, whose empirical probabilities
of occurrence are known, such that they produce the original regular expres-
sion once concatenated. We denote the original regular expression by f � g,
where the symbol � represents the operator of concatenation. The a priori
probability of occurrence of such a concatenation can be derived as follows:

p0(f � g) = p(f)p(g). (2)

In the same manner, the maximum value of the probability of occurrence of
the concatenation can be found as follows:

pmax(f � g) = min{p(f), p(g)}. (3)

Thus, for example, p0(ij) = p(i)p(j) and pmax = min{p(i), p(j)}, with

i, j ∈ A.

Regular expressions can also contain groups, which are indicated in paren-
theses in Perl notation. A group may contain literals or, more generally, any
regular expressions. If the regular expressions f1, f2, . . . , fn that form a group
are all distinct such that none is a superset of any other, it holds that

p((f1|f2|. . . |fn)) = p(f1) + p(f2) + · · ·+ p(fn). (4)

Groups are equivalent to paradigms, as they are governed by the principle
of selection. Suppose that the empirical probability of a regular expression

e � (f1|f2|. . . |fn) � g that contains a group of regular expressions has been

computed. One could derive the a priori probability of the more specific regular
expression that matches only the regular expression fi of this group (thereby
selecting fi) as follows:

p0(e � fi � g) =
p(e � (f1|f2|. . . |fn) � g)p(fi)

p((f1|f2|. . . |fn))
. (5)

Concatenation and selection are the fundamental types of relations that
the semiotic cognitive automaton can identify and match in the corpus. Each
match causes the number of occurrences of a given relation to be incremented
by one unit. We also require the automaton to compute prior probabilities for
these relations.

8 Valerio Targon

0 p0(g) pmax(g)

−1

0

1

p(g)

r
(g

)

Fig. 1 Relevance r of a composite syntagm g as a function of its occurrence probability p.

2.2 Components of the semiotic cognitive automaton

The semiotic cognitive automaton comprises two main components: the syn-
tagmatic algorithm and the paradigmatic algorithm.

The syntagmatic algorithm. The syntagmatic algorithm is able to com-
pute the a priori probabilities and empirical probabilities of occurrence of lin-
ear combinations of symbols, or syntagms, as described in Section 2.1. More-
over, because the number of syntagms existing in the corpus is potentially un-
bounded, the algorithm is tasked with selecting and delivering to the paradig-
matic algorithm a subset of the possible syntagms, such that the number of
relations processed by the paradigmatic algorithm remains low.

The syntagmatic algorithm selects only syntagms that carry additional in-
formation about the corpus. Note that in any syntagm, one or more hypotheses
are implicit. For example, once we know the number of occurrences in the cor-
pus of the syntagm ij , namely, #(ij), it is natural to posit that after a

symbol i, a symbol j will be found with probability #(ij)/#(i) ∈ [0, 1]. The

probability invoked in this hypothesis can differ significantly from p(j). We
can then select syntagms with associated hypotheses that better describe and
explain the corpus. Such a criterion will minimise the computational require-
ments of the paradigmatic algorithm and will be acceptable provided that upon
execution of the paradigmatic algorithm using these syntagms, paradigms are
created that can form new syntagms (syntagms of a superior level) that also
satisfy the criterion. In Section 3, we demonstrate that the semiotic cogni-
tive automaton can produce several iterations of semiotic modelling using the
following criterion for selecting among syntagms:

p(g)− p0(g) > Th, (6)

where we recall that we treat syntagms as regular expressions and where Th >
0 is an appropriate acceptance threshold.

The semiotic cognitive automaton 9

Note that the difference between p(g) and p0(g) takes values on the interval
[−p0(g), pmax(g) − p0(g)]. This dependence of the domain makes it difficult
to define a common threshold for syntagms with different maximum values
of their probability of occurrence. One possible approach is to define a new
metric, namely, the order-2 relevance of the syntagm, to be bounded on [−1, 1].
Let us compute this quantity as follows:

r(g) =

{
p(g)−p0(g)

pmax(g)−p0(g)
, if p(g) ≥ p0(g),

p(g)−p0(g)
p0(g)

, otherwise,
(7)

where we use a spline of order 2 - i.e., linear interpolation - to connect
the points (p(g) = 0, r(g) = −1), (p(g) = p0(g), r(g) = 0) and (p(g) =
pmax(g), r(g) = 1), as shown in Figure 1.

Clearly, r(g) = 0 implies that the syntagm g - and the information re-
garding its frequency in the corpus - is irrelevant given the available prior
knowledge. Our selection criterion is thus rewritten as

r(g) > Th (8)

and represents a suitable alternative to statistical significance testing.
Because we have established a connection between syntagm selection and

hypothesis selection, the entire process of “hypothesis generation”, “hypothe-
sis evaluation” and “hypothesis testing” requires our attention. Such a three-
phase process has been connected to the three forms of reasoning classified
by Charles Sander Peirce [24]. Table 1 introduces the Peircean categories of
abduction, deduction and induction. They can serve as a model for the syn-
tagmatic algorithm of the semiotic cognitive automaton. One requirement for
the automaton to act as an artificial cognitive system is therefore the imple-
mentation of automated abductive, deductive and inductive reasoning [25].

Peircean form of reasoning
Cognitive interpretation
[25]

Implementation in
the semiotic cognitive
automaton

Abduction
(1) provide possible expla-
nations for collected infor-
mation (hypothesis genera-
tion)

several methods of creating
new syntagms

Deduction (2) deduce observable con-
sequences from hypotheses

computation of
p0(·), pmax(·)

Induction (3) test consequences of hy-
potheses

r(·) > Th ? (cfr. Inequality
8)

Table 1 Peirce’s model of the scientific method, its cognitive interpretations and our cor-
responding implementations in the semiotic cognitive automaton.

10 Valerio Targon

PARADIGMATIC ALGORITHM

Deduction:
deduce the a

priori probabilities
of occurrence

Abduction:
generate syntagms

Induction:
statistical estimation

new paradigms

new syntagms

new syntagms

Fig. 2 The (simple) reasoning loop of the syntagmatic algorithm and its relation to the
paradigmatic algorithm.

The semiotic cognitive automaton is constantly faced with facts in need of
interpretation. It employs semiotic modelling to construct hypothetical repre-
sentations, i.e., syntagms and paradigms [14]. We have shown how it is possible
to generate hypotheses from syntagms. Syntagms themselves can be gener-
ated in several simple ways: (i) through random concatenations including new
paradigms, (ii) through the concatenation of partially overlapping existing
syntagms, (i) through selection among paradigms in existing syntagms, and
(iv) by analogy with existing syntagms. We note the following:

– Using any of the aforementioned methods, a new syntagm is generated.
Abduction occurs. The generated syntagm represents a hypothesis.

– Computing the a priori probability and the maximum probability value of
the syntagm corresponds to evaluating consequences of the hypothesis and
requires deduction.

– Induction enables the computation of the empirical probability of the syn-
tagm and the testing of whether the consequence of the hypothesis holds
true.

The proposed automated reasoning loop is so simple that there is only one
possible consequence for each hypothesis. Syntagms are accepted or rejected
on the basis of the difference between their empirical and a priori probabilities
following the selection criterion of Eq. 8.

Figure 2 illustrates the closed-loop reasoning process for the semiotic cogni-
tive automaton. The syntagmatic algorithm must return new syntagms - each
with an associated metric of relevance - on which abductive reasoning is then
performed once again or which are then used by the paradigmatic algorithm.

The syntagmatic algorithm reveals explanatory rules or constraints con-
cerning the input, also making use of symbols autonomously created by the
automaton, i.e., by the paradigmatic algorithm. We use the term semiotic cog-
nitive grounding (see the Introduction) to refer to the process of connecting
lower-level symbols to syntagms that express rules of induction.

The paradigmatic algorithm. The results of induction are used by the
paradigmatic algorithm to build paradigms. For convenience of representation,
let us introduce regular expressions that contain variables as matching ex-

The semiotic cognitive automaton 11

pressions. In Perl notation [23], variable names are introduced by the special

character $. For example, let

fdigram($var1 , $var2) = $var1$var2 (9)

indicate any possible sequence of values that can be assigned to the two vari-

ables $var1 and $var2 .
Paradigms involve a selection operation among alternatives. The principle

of selection operates in a top-down manner in the sense that the alternatives
emerge once a specific paradigm has been identified. Paradigms can be identi-
fied by means of a “commutation test” [26]. In this test, aspects of the signifier
are modified to a certain degree to verify whether a modification of the sig-
nified occurs as a result. Clearly, top-down paradigmatic analysis cannot be
performed by an unsupervised automaton. Conversely, our automaton builds
paradigms in a bottom-up fashion, making use of syntagmatic relations. To
date, the lack of a reliable, versatile mechanism for performing bottom-up
paradigmatic analysis has limited the possibilities of semiotic modelling.

Paradigmatic abstraction based on the Pearson correlation coefficient has
previously been proposed [27]. The Pearson correlation coefficient returns val-
ues on the interval [−1, 1]. It computes the correlation between two variables
of which samples are available, and it represents a normalised covariance. It
is also known as the product-moment correlation, and it is typically denoted
by ρ. Let us suppose that the corpus is divided into K distinct collections of
symbols. For example, the corpus may consist of a set of text articles, as in
[27]. The division of the corpus into collections must follow appropriate logic,

and these collections should be homogeneous. Let pk(i) = #(i)
Nk

represent the
probability of occurrence of symbol i in the k-th collection, which is Nk sym-
bols in size. Let Pi be the variable associated with the occurrence probability
of symbol i in the generic collection. Each collection k serves as a statistical
sample, on which Pi is evaluated as pk(i). The expected value of Pi is clearly
p(i). The correlation between Pi and Pj is then estimated as follows:

ρ(Pi, Pj) =

∑K
k=1(pk(i)− p(i))(pk(j)− p(j))√∑K

k=1(pk(i)− p(i))2
√∑K

k=1(pk(j)− p(j))2
. (10)

The expected value of the occurrence probability in any subcomponent of the
corpus is, indeed, p(i).

By extension, we say that the correlation between two symbols is the cor-
relation between their occurrence probabilities. We note that occurrence in
a logical subcomponent of the corpus can be regarded as an example of a
syntagmatic relation. Another example of a syntagmatic relation is concate-
nation with a certain other symbol, and the total number of possible relations
is infinite. The potential of this extended correlation has not previously been
examined.1

1 I learned of this use of the extended correlation from the Italian computer scientist Piero
Slocovich.

12 Valerio Targon

We know from Section 2.1 that any syntagm is associated with a given
a priori probability of occurrence. Let us consider a finite set of syntagmatic
relations and define the vector of differences as follows:

δi =

 p(f1(i))− p0(f1(i))
...

p(fZ(i))− p0(fZ(i))

 , (11)

where f1(i), · · · , fZ(i) represent Z different regular expressions that contain
the symbol i as a variable, i.e., Z different syntagms involving symbol i.

We can construct a vector δi such that it has an average of zero. For
example, by denoting the L base symbols in the corpus by a1, · · · , aL and
choosing f1(i) = ia1 , · · · , fL(i) = iaL , we obtain the following vector:

δi =

 p(i � a1)− p(i)p(a1)
...

p(i � aL)− p(i)p(aL)

 , (12)

which satisfies the constraint mean(δi) = 0. In the following, when computing
the correlation coefficient, we do not impose such a constraint on the average
of the vector of differences.

The semiotic automaton computes the correlation coefficient of any two
symbols i and j as follows:

ρ(i, j) =
δTi δj
‖δi‖‖δj‖

, (13)

where ‖y‖ represents the `2-norm of y.
Let us further generalise the correlation. First, we can use our relevance

metric in δi in place of the difference in probability when considering syntagms
with different maximum values of their probability of occurrence. Second, the
syntagms in δi may be associated with different degrees of importance. This
can be expressed by a weight vector w with a size Z equal to that of δi. Let
us introduce the weight matrix W = diag(w). Then, the correlation becomes

ρ(i, j) =
δTi Wδj
‖δi‖w‖δj‖w

, (14)

where ‖y‖W represents the weighted `2-norm of y.
The (symmetric) correlation matrix can then be computed as

R = [ρ(i, j)]i,j∈A. To identify paradigms, we use the correlation matrix R
and a hierarchical clustering algorithm. For this purpose, we need to compute
a dissimilarity (or distance) matrix from R. Several methods are possible; for
example, the distance can be defined as follows:

d(i, j) = 1− |ρ(i, j)|, (15)

The semiotic cognitive automaton 13

such that negative correlation values are also considered. The paradigmatic
algorithm can evaluate more than a single distance function.

We resort to hierarchical clustering [28] because it is superior to partitional
clustering for non-isotropic clusters. In fact, the size of the clusters is not
fixed beforehand. Moreover, the number of clusters is also unknown; thus, the
clusters must be evaluated based on their intragroup distance properties. Our
algorithm should also permit the formation of overlapping clusters by setting
different thresholds for the average intragroup distance. The pseudocode for
the hierarchical clustering algorithm is presented in Algorithm 1.

input : a set of symbols S
output: a hierarchy of clusters with overlaps

Allocate each symbol s ∈ S to a single cluster. Let C be the set of clusters;
Let ∆ denote the diagonal in the Cartesian product S × S. P = ∆;
while S 6∈ C do

(a, b)←− argmin(S×S)\P d;

P ←− P ∪ {a× b, b× a};
X ←− {a, b};
forall symbols c ∈ S do

if daverage(X, c) < d(a, b) then
X ←− X ∪ c;

end

end
C ←− C ∪X;

end

Algorithm 1: Hierarchical clustering of symbols that returns partially
overlapping clusters.

The paradigmatic algorithm can be run on any set of symbols, including
existing syntagms and paradigms, in the iterations following the first one. The
syntagmatic and paradigmatic algorithms interact with each other to generate
new meaning representations, including syntagms of paradigms and paradigms
of paradigms, as depicted in Figure 3. To trigger the first iteration, the semiotic
cognitive automaton is required only to be able to identify in the corpus the
different base symbols making up the input alphabet A.

3 Learning the semantics of a notational system

In this section, we will demonstrate how the semiotic cognitive automaton can
learn, without any a priori representation, the semantics of a notational sys-
tem, namely, arithmetic operations. From a semiotic perspective, a sequence
of concrete examples of arithmetic operations exhibits sufficient redundancy
to ensure that rules can be inferred and that learning their general meaning is
possible [29]. This typically occurs in the learning of mathematics by humans.
The automaton employs the redundancy and regularities of exemplary arith-
metic operations to understand their semantics. The only requirement for the
automaton is that it must be able to discern the set of base symbols.

14 Valerio Targon

Syntagmatic algorithm

input

A

iterations

Paradigmatic algorithm

B1

B2

. . .SCA

Fig. 3 The semiotic cognitive automaton (SCA) and its main components. Several special
sets of symbols are also represented: the input alphabet, A; the set of paradigms created by
the first iteration of the paradigmatic algorithm, B1; and the set of paradigms created by
the second iteration of the paradigmatic algorithm, B2. The syntagmatic and paradigmatic
algorithms can use any of the symbols existing in any of the previous iterations.

The semantics of the numerical notational system involves numbers and
computations. Numerals are marks that have been more or less arbitrarily cho-
sen to represent particular numerosities. Ciphers have a conventional, symbolic
meaning [30], e.g., the Arabic digit ‘3’ denotes a particular natural number,
namely, 3. In multi-cipher numerals, the basic symbols are concatenated in
accordance with certain syntax rules that determine their meaning [31]. In an
additive numerical system, concatenation takes the function of addition (as
in the Roman numeral ‘III’), whereas a positional system is characterised by
a more complex place-value representation. The primary purpose of numerals
is to denote numerosities. Moreover, they assist in performing arithmetic op-
erations, such as addition, subtraction and multiplication, wherein, through
operational signs, certain syntactical structures of symbols acquire semantic
meanings. Arithmetic is associated with hard constraints, i.e., a relation of
necessity exists between the expanded form of an operation and its result,
represented by the equal sign. Furthermore, calculation can be reduced to
simple syntactical symbol manipulation [18]. Therefore, semantics must be
addressed explicitly.

Let the corpus be composed of a set of 500 two-operand additions, 500 two-
operand subtractions and 500 two-operand multiplications, in decimal nota-
tion. The operands are randomly distributed on the interval [0, 500), and only
subtractions in N0 are included. Let the symbol ‘;’ separate the different oper-
ations. The use of a separator symbol is necessary given our assumption that
the input can be regarded as a corpus.

Our alphabet is then defined as A = {0, 1, · · · , 9, +, -, x, =, ;}. Note that
the symbol x represents the multiplication sign and that the sign ‘+’, which

The semiotic cognitive automaton 15

looks like a Perl special character, must be escaped in Perl notation, i.e., \+ .
Throughout this section, the use of Perl notation is indicated by a bounding
box.

3.1 First iteration

In the first iteration, the syntagmatic algorithm is concerned only with adja-
cency relations of the base symbols, of the form f(i, j) = ij , with i, j ∈ A.

The correlation matrix is computed using Equation 13 and by taking the
following vector of differences:

δi =

p(i, a1)
...

p(i, aL)
p(a1, i)

...
p(aL, i)

, (16)

in which we assume that the a priori probability of occurrence p0 is zero for
all relations, as is the case before the probabilities of occurrence of the base
symbols are computed. Such a choice of δi is necessary because the corpus
contains operands that are randomly distributed on the interval [0, 500), and
hence, the probabilities of occurrence of the base symbols are misleading.

We visualise the correlation matrix by means of a bidimensional plot in
which each cell of the matrix is assigned a colour. Figure 4 shows such a map.
It follows from Equation 13 that every value on the diagonal of the map must
be 1. Moreover, given our choice of δi, the correlations can only be positive.
We use these correlations to construct paradigms.

From the correlation matrix, the dissimilarity metric is computed using the
method defined in Equation 15. The hierarchical clustering algorithm performs
progressive merging of the symbols. We observe that the clusters of ciphers
from ‘1’ to ‘4’ form as a result of the choice of the parameters for the generation
of random numbers in the corpus (see the introduction to this section): after
a sign ‘;’, ‘+’, or ‘x’, the operand is more likely to begin with one of these
ciphers than any other. The subtraction sign, ‘-’, exhibits some dissimilarity
with the other operational signs, as we require subtractions to remain within
N0.

To demonstrate how hierarchical clustering operates, a type of graph called
a dendrogram is typically employed. This is a tree diagram in which leaf nodes
are the original elements and the remaining nodes represent the clusters to
which they belong. However, a tree diagram cannot represent the partially
overlapping clusters obtained from our Algorithm 1. For this reason, we in-
vented a new type of diagram, for which we coined the term desmogram, from
the Greek word for “link”. In a desmogram, a cluster characterised by an
average intragroup distance below a given threshold is represented by a link

16 Valerio Targon

+

−

0

1

2

3

4

5

6

7

8

9

;

=

x

+ − 0 1 2 3 4 5 6 7 8 9 ; = x

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4 Correlation map (heatmap) of the base symbols. The symbols are ordered in accor-
dance with their ASCII codes.

iterations

+ x ; - = 1 2 3 4 5 6 7 8 9 0

$cipher

Fig. 5 Desmogram of the first iteration of the automaton. The clusters are ordered from
the bottom to the top of the figure in the order of their formation. The clusters with the
highest intergroup dissimilarity are formed last. Partially overlapping clusters are possible.
Only the clusters highlighted in red are selected based on their average intragroup distances
and overlap relations.

connecting multiple points, where each point represents an element and is du-
plicated in the representation as many times as necessary. From bottom to top,
the average distance threshold increases. The desmogram based on the corre-
lation matrix of Figure 4 is shown in Figure 5. To reduce the search space for
subsequent syntagmatic analysis, our clustering algorithm also performs clus-

The semiotic cognitive automaton 17

ter selection based on the average intragroup distances and overlap relations
of the clusters. The clusters selected from the correlation matrix of Figure 4
are highlighted in red in Figure 5.

Among the selected clusters, we observe the paradigm of the ciphers and the
paradigm of the operational signs. For the remainder of this work, we will refer

to these clusters as variables, namely, $cipher=[0:9] and

$sign=(\+|-|;|=|x) , respectively. (In the following, meaningful names are

assigned to these variables solely to facilitate the reader’s understanding. The
automaton instead refers to them using two nested counters, the first of which
identifies the iteration and the second of which identifies the position of the
paradigm within the iteration.) At this stage, the automaton considers all se-
lected clusters of symbols, i.e., paradigms, as shown in Figure 5, to have the
same importance. Let us refer to the set of clusters created by the automaton
in its first iteration as B1. Table 2 summarises the findings of the first iteration.

Table 2 Output of the first iteration.

Syntagms Paradigms
;0,;=, . . . impossible syntagms B1 ⊇ {$cipher, $sign}

3.2 Second iteration

In the second iteration, the syntagmatic algorithm looks for relations that are
more complex than simple adjacency. We propose to interpret the syntagmatic
algorithm as a process of abduction, deduction and induction. It is commonly
accepted that abduction is initiated by a puzzling observation for which an
explanation will provide some kind of reward [32]. The first iteration of the
automaton reveals the existence of certain paradigms. This is surprising, as
such an outcome is not guaranteed by the structure of the paradigmatic al-
gorithm alone. An hypothesis is then formulated that the paradigms from
the first iteration enable more complex syntagmatic relationships. As the au-
tomaton lacks a deeper understanding from previous iterations, it proceeds
via brute force. Several hypotheses are formed at this stage, involving com-
binations of symbols and paradigms in the sets A and B1. Equivalently, we
can refer to these hypotheses as regular expressions. These hypotheses must
then be tested. Through deduction, the a priori probability p0(f) of a regular
expression f can be computed starting from the occurrence probabilities of
its components. Through induction, the relevance of the regular expression f
can be computed using Equation 7. An hypothesis fails the test if its relevance
falls below the threshold Th.

Table 3 lists the hypotheses that score the maximum relevance and are
thus accepted.

18 Valerio Targon

Table 3 The first syntagmatic relations involving the paradigm $cipher. The numbers of
occurrences and the relevance values are also shown.

Regular expression f #(f) r(f)

=$cipher+; 1500 1
;$cipher+\+ 500 1
;$cipher+- 500 1
;$cipher+x 500 1
x$cipher+= 500 1
\+$cipher+= 500 1
-$cipher+= 500 1

Regular expressions associated with accepted hypotheses can be further
concatenated, and the a priori probabilities of the resulting concatenations
can be computed using Equation 2. Two steps of concatenation are possible
using the syntagms listed in Table 3, and the results are listed in Table 4. We
note that these hypotheses have ill-defined relevances because in each case,
the a priori probability of occurrence coincides with the maximum value of
the probability of occurrence. These relations do not add any information
compared with the relations of Table 3 but rather organise this information
in a more structured way. Nevertheless, these hypotheses are accepted given
their high number of occurrences.

Table 4 Syntagmatic relations obtained through concatenation. Some of the relations are
accepted because of the criteria used to build the corpus. Because pmax(f) = p0(f), the
relevance is ill-defined.

Regular expression f #(f) r(f)

;$cipher+\+$cipher+= 500 i.-d.
;$cipher+-$cipher+= 500 i.-d.
;$cipher+x$cipher+= 500 i.-d.
=$cipher+;$cipher+\+ 500 i.-d.
=$cipher+;$cipher+- 500 i.-d.
=$cipher+;$cipher+x 500 i.-d.
\+$cipher+=$cipher+; 500 i.-d.
-$cipher+=$cipher+; 500 i.-d.
x$cipher+=$cipher+; 500 i.-d.

;$cipher+\+$cipher+=$cipher+; 500 i.-d.
;$cipher+-$cipher+=$cipher+; 500 i.-d.
;$cipher+x$cipher+=$cipher+; 500 i.-d.
=$cipher+;$cipher+x$cipher+= 500 i.-d.
=$cipher+;$cipher+-$cipher+= 500 i.-d.
=$cipher+;$cipher+\+$cipher+= 499 i.-d.
-$cipher+=$cipher+;$cipher+- 499 i.-d.
x$cipher+=$cipher+;$cipher+x 499 i.-d.
\+$cipher+=$cipher+;$cipher+\+ 498 i.-d.

It is possible to use these relations to construct arguments “from part to
whole”, i.e., rules of induction of the following type: “after a ‘+’ sign, the

The semiotic cognitive automaton 19

first-next symbol of the paradigm $sign is ‘=’ with probability 1 and the

second-next one is ‘;’ with probability 1 ”. Obviously, such rules are valid only
in our corpus, given the criteria we followed to assemble it, and are not gen-
erally valid in the numerical notational system. In other words, the principle
of induction can produce only explanations and not truths [33]. The inductive
bias [34] of our algorithm is not so strong, when compared to other machine
learning algorithms and thanks to the flexibility guaranteed by the paradig-
matic algorithm. For it, it is straightforward, even after only one occurrence of

a mathematical sentence with three operands, to hypothesise that $cipher+

and $cipher+\+$cipher+ form a paradigm together and to update the rules

of induction.

The rules of induction are not purely syntagmatic because they are found
using previously discovered paradigms. Without knowing the paradigms of the
first iteration, the search space to retrieve these rules of induction would have
been prohibitively large. In the second iteration, only some of the paradigms

discovered in the first iteration, i.e., $sign and $cipher (see Figure 5)

are retained in accepted hypothesis by the syntagmatic algorithm. Nothing,
however, prevents paradigms that are not retained in one iteration to be used
in subsequent iterations, and therefore, these paradigms are held in memory
rather than being deleted.

We use the term semiotic cognitive grounding (see the Introduction) to
refer to the process that brings meaning to certain paradigms in connection
with syntagms expressing rules of induction. Note that a symbol may be used

in a context different than that of its creation: the paradigm $cipher is cre-

ated in the first iteration on the basis of adjacency relations between symbols
and is then used in the second iteration to represent operands separated by
operational signs. However, the paradigm is still considered in a first-order
statement based solely on analysis of the input. Second-order reasoning about
the paradigm $cipher, which relies on the ability of the automaton to observe
its own structure, is described in the discussion of the third iteration.

At this point in the analysis, no new paradigms will emerge. The syntag-
matic algorithm needs to proceed further. An additional method of forming
new hypotheses is through selection, i.e., choosing one of the members of a
paradigm to represent the paradigm. To formulate such an hypothesis, we be-
gin with a syntagmatic relation that makes use of paradigms and suppose that
the occurrence of a specific paradigm member can determine a new syntag-
matic relation. When faced with a sequence of paradigm members, as in the

regular expression /$cipher+/ , the hypothesis must specify which position

the selected member occupies.

Hypotheses specifying the value taken by $cipher at only one position

and starting from the regular expressions listed in Table 4 fail to produce new
syntagmatic relationships, as all instances have approximately null relevance,

20 Valerio Targon

with one exception2. The same can be said for hypotheses specifying the values
at two positions. However, if three positions to be specified are chosen in an
opportune manner, then only a small subset of the possible instances will score
highly in relevance, and the majority of instances will have a null probability
of occurrence.

Table 5 shows several instances of such regular expressions, ordered first by

relevance and then by frequency. By writing $cipher{n} , we indicate that

exactly n (unspecified) ciphers match at different positions within the syntagm.
Note that only instances that contain the symbol ‘+’ have been included in
Table 5. In the following, we separate the relations output by the syntagmatic
algorithm based on the operational signs they contain. Such a separation can
be implemented by the paradigmatic algorithm using different weight vectors,
as in Equation 14.

Table 5 Examples of syntagmatic relations obtained through the selection of syntagms
containing the addition sign.

Regular expression f r(f) #(f) #max(f)

;4$cipher*\+2$cipher*=7$cipher*; 1 15 15
;3$cipher*\+4$cipher*=8$cipher*; 1 14 14
;$cipher*0$cipher{n}\+$cipher*4
$cipher{n}=$cipher*4$cipher{n}; 1 11 11

;$cipher*9$cipher{n}\+$cipher*7
$cipher{n}=$cipher*6$cipher{n}; 1 11 11

;$cipher*0$cipher{n}\+$cipher*8
$cipher{n}=$cipher*8$cipher{n}; 1 10 10

;$cipher*7\+$cipher*8=$cipher*5; 1 9 9
. . .
;$cipher*7$cipher{n}\+$cipher*8
$cipher{n}=$cipher*5$cipher{n}; 0.928 13 14

;$cipher*2$cipher{n}\+$cipher*5
$cipher{n}=$cipher*7$cipher{n}; 0.922 12 13

;4$cipher*\+3$cipher*=8$cipher*; 0.919 12 13
. . .
;$cipher*9$cipher{n}\+$cipher*1
$cipher{n}=$cipher*0$cipher{n}; 0.8 8 10

. . .
\+$cipher*3=$cipher*6;$cipher*3\+ 0.797 4 5
. . .
;$cipher*9$cipher{n}\+$cipher*1
$cipher{n}=$cipher*1$cipher{n}; 0.568 4 7

. . .

In the second iteration, the syntagmatic algorithm discovers a structure
that is of fundamental importance for understanding the rules governing the
positional system (read from right to left). A convenient means of expressing
the relations is to represent regular expressions using three variables, which

2 This exception is represented by the regular expressions that contain the impossible
sequences “;0”, “=0”,. . . , already known from the first iteration (see also Table 2).

The semiotic cognitive automaton 21

take their values from among the symbols of the corpus alphabet, in the form
f(i, j, k), with i, j, k ∈ A. A recurrent example from Table 5 is

faddition(i, j, k) = ;$cipher*

�i� $cipher{n}\+$cipher* �j� $cipher{n} =$cipher* �k� $cipher{n}; , (17)

but other relations occur as well.
The second iteration of the paradigmatic algorithm makes use of ternary

relations, as opposed to the binary relations of adjacency used in the first iter-
ation. The outputs of the second iteration of the paradigmatic algorithm are
again paradigms of the elements of A, specifically paradigms of the ciphers
0, · · · , 9, which are used to specify syntagms through selection by the syntag-
matic algorithm. To compute a 10×10 cipher correlation matrix, the values of
two ciphers in these ternary relations must be fixed. The correlations can be
computed using a vector of relevances, i.e., a generalisation of the vector of dif-
ferences (see the description of “The paradigmatic algorithm” in Section 2.2).
It is not necessary to compute the complete vector of relevances, which would
consider all combinations of i, j and k for every ternary relation. To reduce
the computational burden of the paradigmatic algorithm, we fix an acceptance
threshold of Th = 0.45 for the acceptance of syntagms and, for convenience,
approximate the relevances of nonexistent or unacceptable syntagms as zero.
In place of the exact vector of relevances, we then obtain a sparse vector:

Spδi =

r(faddition(i, 0, · · · , 9, 0, · · · , 9))
r(faddition(0, · · · , 9, i, 0, · · · , 9))
r(faddition(0, · · · , 9, 0, · · · , 9, i))

...

 , (18)

which will include, in addition to the 300 faddition relations, any other relation
from Table 5 that has been accepted.

We compute the correlation matrix via sparse vector multiplication. Entry
ρ(i, j) is computed as follows:

ρ(i, j) =
SpδTi Spδj
‖Spδi‖‖Spδj‖

. (19)

The (unweighted) correlation map is shown in Figure 6. The correlations are
always non-negative because we required the relevance to be non-negative.

The set of paradigms created during the second iteration B2 includes the

following: $zeroOrOne=(0|1) , $oneOrTwo=(1|2) , $twoOrThree=(2|3) ,
and so on. At the end of this iteration, more detailed rules of induction can be
formed. For example, we can make the following statement: “after a match to

the regular expression ;$cipher*1$cipher{n}\+$cipher*1$cipher{n}= ,

the regular expression $cipher*$twoOrThree$cipher{n}; will be found

22 Valerio Targon

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6 Second iteration of the paradigmatic algorithm: correlation map for the ciphers
obtained using only relations containing the addition sign.

with probability 1 ”. These rules of induction remind us of the facts related
to addition, but the automaton cannot understand semantic relationships at
the present stage. The second iteration thus reveals the paradigm of consec-
utive ciphers, i.e., ciphers whose difference is either 1 or, in the case of nine
and zero, the base of the numerical system decremented by 1.

Two additional actions can be performed by the automaton at this stage.
First, upon observing that all of the new paradigms are pairs, it can group
these paradigms into a single one:

$adjacentCiphers=(01|10|12|21|23|32|34|43|45|54|56|65|67|76|78

|87|89|98|90|09)
.

A paradigm of paradigms is very versatile. In Perl syntax, it is described as
a capture buffer [23]. Let us consider the following example: to match the oc-
currence of consecutive ciphers in a particular regular expression, two capture

buffers are created using bracketing constructs, (· · ·) :

;$cipher*($cipher)$cipher{n}-$cipher*($cipher)$cipher{n}= ; these buffers

are referenced as $1 and $2 . There is a match only if the following match

operation returns true: "$1$2"= /$adjacentCiphers/ .

The semiotic cognitive automaton 23

0

1

23

4

5

6

7 8

9

Fig. 7 Graph representation of the paradigms of the second iteration. Two symbols are
connected if they appear in the same paradigm.

Next, a convenient representation of the paradigms as a graph is gener-
ated. Figure 7 depicts the ciphers as the nodes of a graph. An edge exists
between any two ciphers if they appear together in a paradigm. The resulting
graph is clearly a chain. This graph was not obtained through construction
but rather represents a surprising fact, for which an explanation can be sought
through abduction in the subsequent iteration [32]. This representation as a
graph suggests a method of building new, tentative paradigms for input to
the syntagmatic algorithm without requiring the paradigmatic algorithm to
compute the correlation-based distances between symbols. From this graph,
we can conclude that 3, for example, has two single-hop neighbours, namely,
2 and 4; two two-hops neighbours, namely, 1 and 5; and so on. Moreover, the
following paradigm of pairs is created:

$adjacentCiphersAscending=(01|12|23|34|45|56|67|78|89|90) , in which

the ciphers appear in only one possible order, consistent with the chain graph.
It rests with the automaton to perform a paradigmatic analysis of the

syntagms that contain either one subtraction sign or one multiplication sign.
Let us compute the correlation matrix using only syntagms that contain

the symbol ‘-’ and have a relevance greater than the threshold. We can set
certain weights to zero in w of Eq. 14 to isolate the sparse vector:

Spδi =

r(fsubtraction(i, 0, · · · , 9, 0, · · · , 9))
r(fsubtraction(0, · · · , 9, i, 0, · · · , 9))
r(fsubtraction(0, · · · , 9, 0, · · · , 9, i))

...

 ,w =

1100

1100

1100

0

 , (20)

where
fsubtraction(i, j, k) = ;$cipher*

�i� $cipher{n}-$cipher* �j� $cipher{n} =$cipher* �k� $cipher{n}; , (21)

(fsubtraction was constructed in analogy with faddition).

24 Valerio Targon

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 8 Second iteration of the paradigmatic algorithm: correlation map for the ciphers
obtained using only relations containing the multiplication sign.

The clustering algorithm then returns already established paradigms:

$zeroOrOne=(0|1) , $oneOrTwo=(1|2) , If relations different from fsubtraction
are not weighted out, then the correlation matrix contains too much noise be-
cause of false rules introduced by the specific criteria used to generate the
corpus.

Let us compute the correlation matrix using only syntagms that contain the
symbol ‘x’ and have a relevance greater than the threshold. The (unweighted)

correlation map is shown in Figure 8; the paradigms $zeroOrFive=(0|5) ,

$oneOrSix=(1|6) , . . . are returned, i.e., the paradigms of node pairs of the

graph in Figure 7: $fiveHopsCiphers=(05|16|27|38|49|50|61|72|83|94) .

To recapitulate, the second iteration yields the following:

– rules of induction that include the forms of arithmetic two-operand oper-
ations;

– a semiotic cognitive grounding of the paradigms $sign and $cipher; and
– a univocal ordering of the elements in $cipher, the order of crescent ci-

phers, at a stage before it is known that they represent ciphers.

Table 6 summarises the findings of the second iteration.

3.3 Third iteration

As discussed in Section 2.2, the syntagmatic algorithm hypothesises that the
new paradigms can form new syntagms, which are associated with a metric

The semiotic cognitive automaton 25

Table 6 Output of the second iteration.

Syntagms
;$cipher*1$cipher{n}\+$cipher*1$cipher{n}=$cipher*(2|3)$cipher{n};
. . .
;$cipher*1$cipher{n}-$cipher*9$cipher{n}=$cipher*(1|2)$cipher{n};
. . .
;$cipher+0x$cipher+=$cipher+0;

;$cipher+x$cipher+0=$cipher+0;

;$cipher*1x$cipher*($cipher)=$cipher*($cipher); "$1"="$2"

;$cipher*($cipher)x$cipher*1=$cipher*($cipher); "$1"="$2"

Paradigms
paradigms of paradigms of B1
$adjacentCiphers, $adjacentCiphersAscending, $fiveHopsCiphers

of relevance to determine whether they satisfy the acceptance criterion. Using
capture buffers, accepted hypotheses take the following form:

;$cipher*($cipher)$cipher{n}\+$cipher*$zeroOrOne$cipher{n}=
$cipher*($cipher)$cipher{n};

"$1$2"= /$adjacentCiphersAscending/

and

;$cipher*($cipher)$cipher{n}-$cipher*($cipher)$cipher{n}=
$cipher*$zeroOrOne$cipher{n};

"$2$1"= /$adjacentCiphersAscending/

.

In particular, for the last ciphers of the operands and the result, the syn-
tagm is more precise:

;$cipher*($cipher)\+$cipher*1=$cipher*($cipher);

"$1$2"= /$adjacentCiphersAscending/

and

;$cipher*($cipher)-$cipher*($cipher)=$cipher*1;

"$2$1"= /$adjacentCiphersAscending/
.

Consider now the additional paradigm of pairs

$twoHopsCiphersAscending=(02|13|24|35|46|57|68|79|80|91) , derived

from the relations of Figure 7. Let us indicate the property of being two hops
distant by highlighting in red the descriptive text in the variable name. Thus
far, all variable names have been conventional. However, this variable has been
deliberately constructed based on this property. The following hypothesis is

accepted:
;$cipher*($cipher)\+$cipher*2=$cipher*($cipher);

"$1$2"= /$twoHopsCiphersAscending/
.

Other sets can be constructed similarly based on the graph of Figure 7.

Obviously, $adjacentCiphersAscending is the set of ciphers that are one

hop distant. A puzzling observation is made by the automaton: the hop dis-
tance of the symbols in terms of their paradigmatic relations appears to be
related to certain symbols, e.g., adjacent symbols are related to symbol ‘1’ and
two-hop-distant symbols to symbol ‘2’, and furthermore, every time the hop

26 Valerio Targon

distance is increased by one unit, the symbol related to the increased distance
happens to be adjacent to the symbol related to the initial distance in Figure
7; ‘1’ and ‘2’ are such symbols in the example. No counting ability is required
of the automaton other than mastering the operation of succession (i.e., iter-
ated counting), which is necessary to move from one node to the next, always
in the same direction. Abduction then connects the concept of succession with
this observation to formulate the hypothesis that the symbols in the paradigm

$cipher indicate numerosities.

This hypothesis is confirmed for all ciphers. In particular, ‘0’ can be asso-
ciated with a numerosity of 10. However, ten-hop-distant ciphers are simply
identical ciphers, suggesting that ‘0’ is a neutral element. Similarly, there is
no need to attach ambiguity to any other cipher, e.g., by associating ‘1’ with
not only a numerosity of 1 but also numerosities of 11, 21, and so on; our au-
tomaton implements Occam’s razor. The automaton knows how to represent
only the numbers up to nine in the notational system.

There is no way to represent this knowledge of the automaton by means of
regular expressions. This knowledge, however, amounts to semiotic cognitive
grounding of the second order (see the Introduction).

There is no doubt that initially, the ciphers are merely input symbols
with no attached meaning, to which the paradigmatic algorithm and itera-
tive semiotic modelling can be applied. The automaton then, by computing
the relevancy of hypotheses associated with regular expressions, learns that
the paradigm corresponding to ciphers provides explanatory rules about the
corpus, i.e., rules of induction. The paradigm of ciphers, which results from a
semiotic definition, is inherently and meaningfully grounded in the cognitive
process directed at a corpus of mathematical sentences. The first-order mean-
ing of a semiotic symbol is defined only in relation to rules of induction in
the corpus. However, a second-order description of the symbol is also possible.
The automaton constructs an internal representation of paradigm elements,
i.e., the representation of the ciphers shown in Figure 7, and forms a connec-
tion between this representation and the structures learned from the corpus to
assign them their semantic meaning of numbers. Second-order semiotic ground-
ing requires a high level of abductive reasoning ability. The automaton could
continue iterating between the syntagmatic and paradigmatic algorithms, still
arriving (as will be shown in the following) at the capability of predicting
the results of arithmetic operations with no understanding of their semantic
meaning. Our semiotic algorithm, however, must be capable of second-order
reasoning about symbols, in a manner unprecedented in the development of
artificial intelligence.

The problem is then encountered that it is uncommon to have a program
that can “master the operation of succession” and “perform abduction”. The
question of which instructions would endow the program with the necessary in-
tentionality to intrinsically ground symbols remains open. It is, however, both
possible and relatively simple to instruct the automaton to make observations
of its internal storage and to relate these observations to the input symbols

The semiotic cognitive automaton 27

in all combinatorially possible meaningful ways. The abduction process then
enables the selection of certain results from among these tentative relations.
Our proposal is the following.

The semiotic cognitive automaton has access to a function f , which takes
as an input an item list, list[]; the identifier of an item in the list, init; and an
offset value, p, which can be zero, one, and so on. The programmer should not
restrict p to be an integer type of a particular programming language but in-
stead should use Peano arithmetic numbers, which are constructed iteratively
using only one symbol, i.e., the Peano zero 0, and one function, i.e., the Peano
successor function S(·), such that 1 = S(0), 2 = S(S(0)), and so on. When
p = 0, the function returns the initial item init; for p > 0, the element returns
the item that is p hops away from the input item, if such an item exists in the
list. Therefore,

(item)res = f((item[·])list[·], (item)init, p). (22)

The function f for the automaton may be a codelet, written by its program-
mer, or a routine, hardwired into its circuits. When executing its program, the
automaton may call the function f with a certain frequency. For example,
suppose that the syntagmatic algorithm is considering a symbol ‘+’ appear-
ing in a given position in the corpus and that it is interested in a relation of
subsequence. The program could then define list[] as the corpus and init as
pointing to the symbol ‘+’, set p = 1 and call the function f to obtain an-
other symbol as a result. Moreover, the automaton is free to call the function
f with the input parameters of its choice. At a certain point, the automaton
applies the function f to any of the symbol lists that can be derived from
Figure 7, i.e., list0 = [‘0’, ‘1’, . . . , ‘9’], list1 = [‘1’, . . . ,‘9’,‘0’] and so on. The
results include f(list0,‘1’, 0) =‘1’, f(list0,‘0’, 9) =‘9’, . . . , f(list0,‘9’, 0) =‘9’;
f(list1,‘1’, 0) =‘1’, . . . , f(list1,‘9’, 1) =‘0’; and so on. The results of running
the function f are written into a record of triplets (init, p, res), in which p
is a Peano arithmetic number. The automaton compares the entries in this
table with the triplets of symbol items in faddition. Mappings from a Peano
arithmetic number to a digit symbol are then learned: d(0) =‘0’, d(1) =‘1’,
. . . , d(9) =‘9’.

By inverting these relationships, mappings from a digit symbol to a Peano
arithmetic number can be formed:

p(‘0’) = 0, p(‘1’) = 1, . . . , p(‘9’) = 9. (23)

Because the Peano zero is mapped to the symbol ‘0’, the only consistent
listing is list0. In fact, for any different listing list1 to list9, it holds that
f(list,‘9’, 1) =‘0’, whereas the successor of p(‘9’) cannot be p(‘0’). The au-
tomaton learns a representation of the numbers up to nine by virtue of the
mapping function d, which is defined only for numbers up to nine.

In the following, we will highlight in red the paradigm $cipher to indicate

that its meaning has been learned.

28 Valerio Targon

Additionally, the rules of induction require the grounding to become ad-
dition facts: “0 + 0 = 0”, “0 + 1 = 1”, “1 + 1 = 2”, and so on. The syntagm

;$cipher*1\+$cipher*1=$cipher*2; is known from the second iteration

of the syntagmatic algorithm. The difference is that in the third iteration, the
meanings of the symbols ‘1’, ‘2’ and all other ciphers have been learned by
the automaton (the ciphers are then indicated in red in the syntagm). It is
then possible, in the third iteration, to interpret the syntagm above in light of
the graph of Figure 7. Cipher ‘2’ is one hop from cipher ‘1’. The automaton
now interprets said syntagm to be a symbolic representation of the property
of “being one hop distant”, i.e., of a unitary increment. This is achieved by
distinguishing the three symbols that identify numerosities - i.e., the ciphers
‘1’, ‘1’ and ‘2’ - from the addition sign and the equality sign. Moreover, the
addition fact “1 + 1 = 2” is obtained as a generalisation of existing syntagms.
Such a process is followed for all addition facts for which the result is less than
ten. In fact, the automaton does not know how to represent numbers of ten
or higher in the notational system.

The place-value representation has not yet been learned. Consequently,
only addition facts with results up to nine can be correctly reconstructed. The
automaton may incorrectly conclude that “9+1 = 0”, which is true only when
it is assumed that ‘9’, ‘1’ and ‘0’ represent any of the numerosities 9, 19, 29, . . . ;
any of the numerosities 1, 11, 21, . . . ; and any of the numerosities 0, 10, 20, . . . ,
respectively (such an explanation, however, is not favoured by Occam’s razor;
see above). Let us suppose that the automaton restricts itself only to correct,
single-digit addition facts. Still, a number of syntagms that seem to violate the
addition facts, i.e., rules of induction in positions other than the right-most
one, such as

;$cipher*1$cipher{n}\+$cipher*1$cipher{n}=$cipher*3$cipher{n}; ,

are known to it. The automaton is left wondering what causes the known
addition facts to be disattended at certain positions in the input.

All subtraction facts “0− 0 = 0”, “1− 0 = 1”, “1− 1 = 0”, and so on up to
“9− 9 = 0” are also learned. The complementarity of addition and subtraction
(additive inverse), which leads to number facts involving the same ciphers,
becomes grounded in the construction mechanism using the graph of Figure
7.

By contrast, the automaton cannot yet derive multiplication facts. It could
generalise rules of induction for ciphers in the last position on the right-hand
side of operands, with the result (see also the syntagms listed in Table 6)
of defining zero as the absorbing element of multiplication and one as the
multiplicative identity, but it would not be able to ground the operation of
multiplication because no rule of induction for positions other than the last one
on the right could be formed and too few observations in the corpus support
correct single-digit constructs, such as “2× 2 = 4”, “2× 3 = 6”, “2× 4 = 8”,
“3× 2 = 6”, “3× 3 = 9” and “4× 2 = 8”.

The semiotic cognitive automaton 29

The third iteration is not yet complete. The syntagmatic algorithm selects
hypotheses involving further selection. These hypotheses have the following
formats:

;$cipher*10$cipher{n}\+$cipher*10$cipher{n}=$cipher*2$cipher{n+1};

;$cipher*10$cipher{n}\+$cipher*11$cipher{n}=$cipher*2$cipher{n+1};
and so on as well as

;$cipher*11$cipher{n}\+$cipher*19$cipher{n}=$cipher*3$cipher{n+1};

;$cipher*12$cipher{n}\+$cipher*18$cipher{n}=$cipher*3$cipher{n+1};
and so on.

The paradigmatic algorithm computes the correlations of pairs of ciphers
by specifying only one parameter in ternary relations and, through the hi-
erarchical clustering algorithm, admitting the cluster overlaps introduced in
Section 2.2. The following paradigms are added to B3:

–
$ciphersSummingEightOrLess=(00|01|02|· · ·|08|11|12|· · ·|17|
22|23|· · ·|26|33|34|35|44) ,

– $ciphersSummingTenOrMore=(19|28|29|37|· · ·|58|59) , and

– $ciphersSummingNine=(09|18|27|36|45) .

To understand the origin of these paradigms, one should consider, for ex-
ample, the differences among “51”�“x”�“+12”�“y”, “58”�“x”�“+12”�“y” and
“57”�“x”�“+12”�“y”, where “x” and “y” are placeholders for sets of ciphers
of equal length and � denotes string concatenation.

A similar analysis is performed for subtraction. A paradigm of ordered
ciphers, consistent with that created by the automaton in the second iteration,
is returned in the following form:

$ascendingTwoCiphers=(01|02|03|· · ·|09|12|13|· · ·|19|
23|24|· · ·|29|· · ·|78|79|89) .

This reflects, for example, the differences among “58”�“x”�“-12”�“y”, “58”�“x”�“-
19”�“y” and “58”�“x”�“-18”�“y”. Subtraction is not commutative. It is the
relationship of inequality in which exist the corresponding ciphers in the sub-
trahend and the minuend that disambiguates the subtraction rules for ciphers
other than the right-most one.

To recapitulate, the third iteration yields the following:

– semiotic cognitive grounding of the symbols that represent ciphers,
– synthetic rules of induction for addition and subtraction,
– addition facts up to nine and subtraction facts in N0, and
– the complimentarity between addition and subtraction.

Table 7 summarises the findings of the third iteration.

30 Valerio Targon

Table 7 Output of the third iteration.

Syntagms
;$cipher*11$cipher{n}\+$cipher*1(0|1|· · ·|7)$cipher{n}=$cipher*2$cipher{n+1};
;$cipher*27$cipher{n}-$cipher*1(8|9)$cipher{n}=$cipher*0$cipher{n+1};
addition facts up to 9: 0 + 0 = 0, 0 + 1 = 1, . . . , 8 + 1 = 9, 9 + 0 = 9
subtraction facts in N0: 0− 0 = 0, 1− 0 = 1, 1− 1 = 0, . . . , 9− 9 = 0
Paradigms
$ciphersSummingEightOrLess,. . .
$ascendingTwoCiphers,. . .

3.4 Fourth iteration

The semiotic cognitive automaton can correctly predict the result of any op-
eration of addition or subtraction. However, it only knows addition facts with
results up to 9 and single-digit subtraction facts. The complexities introduced
by place value have been regarded as purely notational. Paradigms from the

third iteration, e.g., $ciphersSummingEightOrLess

and $ciphersSummingTenOrMore , are used to create new syntagms, which

enable the algorithm to state rules such as “in a two-operand addition, if ci-
phers summing to 2 or 12 appear in the n-th positions from the right of the
operands and if ciphers summing to 10 or more appear in the (n− 1)-th posi-
tions from the right of the operands or, when ciphers summing to 9 appear in
the (n− 1)-th positions from the right of the operands, if ciphers summing to
10 or more appearing in the (n−2)-th positions from the right of the operands,
then in the n-th position from the right of the result, the cipher ‘3’ appears with
probability 1.” By applying typographical rules to strings [18], the automaton
can compute that 9+3=12, but it does not know “9 + 3 = 12” as an addition
fact, as the semantics of place-value representation have thus far escaped it.

The automaton reasons based on the paradigms of the third iteration and
on the graph of Figure 7. The synthetic rules of induction for addition show
that the cipher in the result is associated with a unitary increment based on

the presence on the right of ciphers in $ciphersSummingTenOrMore , i.e., of

ciphers that sum to numbers whose symbolic representations are unknown
to the automaton (the function d that maps Peano arithmetic numbers to
numeral signs, introduced in the previous section, is defined only for 0, . . . , 9).
However, the automaton does know, from syntagms that predict the last cipher
on the right in a sum, that these ciphers are associated with a third cipher,
which is the one at which one arrives when one starts from the first cipher in
the graph of Figure 7 and takes a number of hops given by the other one. These
operations have the following two properties: (i) when performing them on the
ring, one is certain to step once through the cipher ‘0’, and (ii) in the sum,
the previous cipher on the left is incremented by one. Through abduction, the
automaton learns that the number of passages through zero is the carryover
that is added to the previous cipher on the left. In the notation introduced in

The semiotic cognitive automaton 31

the previous section (see Eq. 23), the automaton learns that

p(“x” � ‘y’) = p(‘y’) + 10× p(“x”), (24)

where ‘y’ represents a generic cipher, “x” represents any set of ciphers, and �
denotes their concatenation. The automaton then computes and stores all
remaining single-digit addition facts (the decimal number system contains
100 addition facts [29]), thereby allowing multi-digit addition operations to
be solved using this representation, which is more synthetic than the rules

based on the third-iteration paradigms $ciphersSummingEightOrLess and

$ciphersSummingTenOrMore .

Note that the automaton already knows from the third iteration that addi-
tion and subtraction are inverse operations. Therefore, it can also easily learn
how to perform subtraction with borrowing.

Thus, the semiotic cognitive automaton has autonomously understood the
meaning of the numerical system, its syntax and its semantics. It not only can
solve any operation of addition and subtraction, or of counting forwards and
backwards, but also can perform original mathematical reasoning. This occurs
as soon as it begins to manipulate symbols independently from the input that
it has received. Consider the following two examples.

First, the automaton can determine that the direction of the equality sign
is reversible. Numbers in place-value representations are compound numeral
signs in which the ciphers, depending on their positions, represent different nu-
merals, all of which are multiples of different powers of 10 and can be combined
via addition. Let the automaton consider all possible addition operations that
generate a given number (equivalence classes of addition pairs). By recognising
the regularity of this set of operations, the automaton discovers the decimal
decomposition of a number.

Second, the automaton is not restricted to subtracting only a smaller num-
ber from the minuend. Let the automaton consider the subtraction of a larger
number from a smaller one. Through the extension of the subtraction facts
that it knows, the automaton discovers negative numbers.

It remains only to discuss multiplication. Thus far, the automaton has been
unable to generate extensive rules of multiplication through semiotic mod-
elling. Its only rules of multiplication involve ciphers in the last positions on the
right. We would like the automaton to receive as an input more relations of the
following type:

;$cipher*06x$cipher*6=$cipher*36; . Alternatively, in an approach anal-

ogous to the learning of arithmetic by humans, we provide the automaton with
a multiplication table, in parallel with the corpus, to allow multiplication facts
to be learned “by rote”. By abduction, the automaton learns that

p(d(S(p(‘a’))) � “x b”) = p(“a x b”) + p(‘b’), (25)

where ‘a’ and ‘b’ represent any cipher and S(·) is the Peano successor function.
Then, the automaton will again consider the multiplications that appear in the

32 Valerio Targon

Syntagmatic algorithm

A = {0, 1, · · · , 9, +, -, x, =, ;}

rules of induction
two-operand operations

addition/subtraction facts

axioms of place-value repres.

iterations

Paradigmatic algorithm

B1 ⊇ {$cipher, $sign}

B2 ⊇ $adjacentCiphers

B3 ⊇
{$ciphersSummingEightOrLess,
$ciphersSummingTenOrMore,

$ciphersSummingNine}

Fig. 9 Paradigms created by the semiotic cognitive automaton upon receiving arithmetic
operations as input.

corpus in an attempt to apply this new knowledge. Recall that the automaton
has learned the semantics of place-value representation and of the carrying op-
eration. The known multiplication facts can then be combined via the distribu-
tive property, e.g., “51×18 = (5×1)×100+(5×8)×10+(1×1)×10+(1×8)”.

4 Discussion

4.1 The problem of understanding

The semiotic cognitive automaton follows an iterative process through the syn-
tagmatic and paradigmatic algorithms to generate representational formats
corresponding to different levels of knowledge and, in 4 iterations, learns how
to perform arithmetic operations. The symbolic structures thus generated are
intrinsically grounded, as products of semiotic modelling. However, in another
sense, we would require a symbol such as ‘8’, for example, to be truly under-
stood as a numerosity before conceding that the automaton grasps semantics.
Our proposed algorithm can accomplish this, as well.

To illustrate this, consider the case of an Aboriginal cryptographer who
lives in the Australian bush and was never taught what ciphers are, such
that initially, they represent for her merely various incomprehensible symbols.
She is, however, so gifted that she does not need anybody to tell her that

The semiotic cognitive automaton 33

the symbol ‘8’ is the number eight or to teach her arithmetic because she
can autonomously discover the arithmetic symbolism by applying the semiotic
algorithm to a corpus of mathematical sentences. When applying the proposed
algorithm, specifically the third iteration (see Section 3.3), she would be in
the following situation: she would know how to use certain syntagms, those
containing the addition sign and the cipher ‘1’, as rules of induction, and she
would know how to define - via a psychological or tool-assisted operation of
succession - a hop distance between any two ciphers using the structures of
certain paradigms of cardinality two (for example, ciphers that appear together
in a paradigm are said to be one hop distant). She would then connect the
operation of succession with the rules derived from the corpus and thereby
ground the originally incomprehensible symbol ‘1’ as a representation of the
numerosity of one, also doing the same for all other ciphers. Second-order
reasoning is easier for such a semiotic cognitive Aborigine to achieve than it
is to achieve in a program (although it is not impossible to imagine such a
program, as shown in Section 3.3).

Such a program would be able to overcome Searle’s Chinese room argument
[3]. In this famous thought experiment, previously mentioned in the Introduc-
tion, John Searle, who does not speak Chinese, follows the instructions of a
Chinese room, i.e., an artificially intelligent chatbot operating in the Chinese
language. The Chinese room has been programmed by someone who knows
Chinese to have the capability of holding a conversation in Chinese. However,
no matter how sophisticated the program may be, regardless of whether it de-
ploys a rule book or an artificial neural network, the program does not exhibit
any capability of grounding, and therefore, Searle could not learn Chinese by
following the instructions of the program. The situation would be different
if he were to receive as an input a corpus of Chinese text and he were to
follow some sort of semiotic algorithm - of which no such proposal has yet
been described for natural language processing (let alone for non-alphabetic
languages) - and to apply second-order reasoning until semantic interpretation
were to eventually emerge.

The key here is that the semiotic algorithm teaches how to assemble an
enormous constellation of representations, each of them able to appear in a re-
lation with any other such that meaning resides in these relations, and also how
to represent within this constellation its own processes and internal states. The
requirement established by the Chinese room argument was recently strength-
ened [35]: could a computer CPU operating on raw binary data really “under-
stand” its program in a manner analogous to the understanding of a human
(hence, to the understanding of the Aboriginal cryptographer or to that of
Searle in our special Chinese library room)? This question is indeed tricky to
answer and relies on the ability for the constellation of representations to gen-
erate concrete dynamics of interpretation for the program. The constellation of
representations cannot then be reduced to a semantic network, considered just
as a directed, labeled graph [36]. We believe that a more productive answer to
this question is to analyse the performance of the program in cognitive tests.

34 Valerio Targon

It is possible, using a single test, to assess different levels of understanding
(as stated in the Introduction and following the suggestion of an anonymous
reviewer, Bloom’s taxonomy [15] can provide guidance in this task). If a pro-
gram fails the assigned test, it must be concluded that the program has not
yet learned the skills necessary to pass it, i.e., that it has not yet been able
to establish certain relations among its constituent entities. The test proposed
here differs in spirit from the famous Turing test because its goal is not to
fool a judge (e.g., into believing that an artificial intelligence is a human) but
rather to assess cognitive capabilities beyond subjectivity. The advantage of
creating tests for programs rather than for humans is that it is possible to
control all operating conditions of a program.

Our semiotic cognitive automaton operates in the domain of mathematics.
Let us provide the automaton with the following test: “iii+iiiii=”, in which
it is confronted with a previously unknown base symbol ‘i’. We know, there-
fore, that the automaton does not know any syntactical rule to use to answer
this test (e.g., a rule that could have been stored as the Perl regular expres-

sion i.{n}\+i.{m}=i.{n+m}). There exists, however, a set of answers that

the automaton could produce that make sense from a syntactical perspective;
it could simply hypothesise that the symbol ‘i’ forms a paradigm together
with the symbol ‘1’ and return the answer “iii222”; or it could return the
answer “iii444”, predicated on the hypothesis of a paradigm (i|2); and so
on. Only if the automaton understands the semantic meaning of numbers can
it answer “iiiiiiii”, or ‘8’, or even “8xi”, each of these answers revealing a
higher level of understanding compared with the previous ones.

Consider also the test “4;7;10;13;”, which cannot be solved directly by
syntactical means, as our automaton has received as an input only numeric
sentences and not numeric sequences. The automaton then retrieves all of the
rules it has learned that contain the numbers 4, 7, 10 and 13, including the
addition facts “4 + 3 = 7” and “7 + 3 = 10”. Struck by this parallelism,
it generates the hypothesis that an occurrence of a separator ‘;’ represents
an operation of adding 3 (or, without requiring semantic knowledge, that it
represents a synonym for the syntagm “+3=”). The hypothesis is accepted
upon verifying that “10 + 3 = 13”. Then, the automaton makes the further
hypothesis that after the final separator ‘;’, the number 16 should follow.
What would happen if we could query the automaton (i.e., ask it and be
understood) about the 1000-th number in such a sequence or its generic n-th
number? Could we induce the program - for example, by providing it with a
relevant textbook - to do algebra (with one or more variables) or to solve word
problems?

Moreover, the problem of completing a sequence is reminiscent of an appli-
cation of Simon Colton’s mathematical discovery system HR [37] to number
theory. HR takes tables of number facts as input and is programmed with a
limited set of production rules to generate sequences of numbers. As demon-
strated by Hofstadter [18], a rule such as “take the prime numbers” can be
reduced to a mere syntactical operation. No semantics is involved; HR explores

The semiotic cognitive automaton 35

- through an heuristic search - the combinatorial space of all possible rules.
Could we induce the program - for example, by providing it with a collec-
tion of human-valued mathematical entities, rather than only with worthless
arithmetic operations - to formulate its own criteria for relevant mathematical
production?

4.2 Relations to other work

The semiotic cognitive automaton described here is unique in its exhibition
of second-order reasoning concerning the input under observation. The role
of semiotics in automated learning, however, has been noted before. The pro-
cedural model of semiotic cognitive information processing is attributed to
Burghard Rieger [14]. Such a learning process relies on no pre-established
semantics but rather leads to the self-organising discovery, through semiotic
modelling, of sign structures from the potential meaning characteristics of a
given input and thus enables their interpretation as signifiers of something
else. The learnt representations (in the form of syntagms and paradigms) are
organised across various levels of meaning and are used to build higher-level
representations.

Rieger applied semiotic cognitive information processing to natural lan-
guage analysis, laying the foundations for computational semiotics [27]. In
this approach, two steps of abstraction are employed to compute the semantic
space of word meanings. In the first step, syntagmatic abstraction, the us-
age correlations of words in sample tests are computed. In the second step,
paradigmatic abstraction, the similarities of distribution over all words are
measured to generate semantic spaces. Our implementation of the semiotic
cognitive automaton differs from Rieger’s implementation in that we perform
semiotic modelling as a truly iterative process.

Methods of learning from raw corpora have also been proposed in the field
of grammar induction, i.e., the learning of grammatical structures from raw
texts [38].

The idea dates back to Harris [39], who postulated that a distributional
analysis of partially aligned sequential contexts permits the identification of
linguistic units in unannotated text. As early as 1961, Lamb [40] described
an algorithm capable of identifying “H-groups”, i.e., horizontal groupings of
items, including V-groups, that occur sequentially in a syntagmatic construc-
tion, and “V-groups”, i.e., vertical groupings of items, including H-groups, that
occur in similar contexts in a paradigmatic construction. His algorithm per-
forms a statistical analysis of word adjacency. More recently, Solan et al. [41]
developed ADIOS (for the automatic distillation of structure), an algorithm
for unsupervised grammar induction that is corpus-independent.

ADIOS combines statistical computation and rule learning; it identifies
“significant patterns” in the corpus, which is treated as a pseudograph, and
forms “equivalence classes”, in which strings appear to be interchangeable in
a given context. The search for significant patterns is repeated iteratively, and

36 Valerio Targon

the equivalence classes are replaced in the corpus (graph rewiring) to arrive
at further generalisations until no new significant patterns are found. The
significant patterns that have been identified are then restated in the form of
rewriting rules, yielding the end product of ADIOS in the form of a grammar.

The paradigmatic algorithm of ADIOS returns equivalence classes, i.e.,
paradigms for which aligned contexts (partially overlapping strings) exist. In
contrast to ADIOS, our algorithm can retrieve paradigms for which incomplete
information exists by using extended correlation matrices. The syntagmatic
algorithm of ADIOS returns syntagms of both base symbols and equivalence
classes. To cope with the intractability introduced by an unbounded number
of syntagms, ADIOS applies to the graph that represents the corpus a greedy
algorithm for selecting the best patterns and, when iterating, considers only
syntagms in which such best patterns, i.e., equivalence classes, have been re-
placed. Our algorithm extends ADIOS, and grammar induction methods in
general, through the use of abduction to generate hypotheses.

5 Conclusion

To advance the status of the debate regarding the capabilities of symbolic
processing, this paper proposes a semiotic cognitive automaton, a prototype
of a multi-stage syntagmatic and paradigmatic algorithm that can successfully
discover syntactic and semantic relationships in the case of an “easy” problem
of semiotic modelling.

The simplicity of the considered problem - the learning of arithmetic op-
erations - originates from the presence of “hard constraints” through which
rules can be inferred by the automaton. In fact, even if the relevant nota-
tional system can be easily formalised, the automaton is not provided with
this representation beforehand but rather automatically learns it.

Figure 9 summarises the iterations followed by the semiotic cognitive au-
tomaton, which receives as an input arithmetic operations in the decimal
number system. The paradigms of ciphers and their ordering are discovered
via paradigmatic analysis in the early stages of the algorithm; however, they
become grounded only in later stages of semiotic modelling. Note that the
automaton can learn independently of any specific “language”, i.e., indepen-
dently of a given system of numbers. The automaton can learn arithmetic start-
ing from input operations presented in Roman numerals, operations coded in
ASCII and expressed in hexadecimal or in any other format, or even operations
expressed in natural language (with complex numerals composed linguistically
using multiplication and/or addition [42]); in this last case, the input alpha-
bet would be A = {one, two, three, . . . , ten, eleven, twelve, thir, teen,
fif, twen, ty, ty-, for, hundred, and, plus, minus, times, is equal to}
and could be extracted by applying a test for statistically relevant k-strings
using a high-order Markov model [43]. The results thus obtained should be
compared to those of Figure 9.

The semiotic cognitive automaton 37

Through the application of reasoning to the internal representation of the
structures corresponding to ciphers and their ordering, later stages of the al-
gorithm will endow these structures with their authentic meanings through
semiotic cognitive grounding of the second order. Subsequently, automatic and
grounded mathematical reasoning becomes possible.

Refinement of the constituent algorithms of our automaton could enable
its application to a class of knowledge domains, which could yield additional
examples of second-order reasoning.

References

1. A. Newell and H. A. Simon, “Computer science as empirical inquiry: Symbols and
search,” Commun. ACM, vol. 19, pp. 113–126, Mar. 1976.

2. D. Hofstadter, “The ineradicable Eliza effect and its dangers,” in Fluid Concepts and
Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought
(D. Hofstadter, ed.), pp. 155–168, Basic Books, 1994.

3. J. Searle, “Minds, brains and programs,” Behavioral and Brain Sciences, vol. 3, pp. 417–
424, 1980.

4. S. Harnad, “The symbol grounding problem,” Physica D: Nonlinear Phenomena,
vol. 42, pp. 335–346, 1990.

5. P. Haikonen, “The role of the associative processing in cognitive computation,” Cogni-
tive Computation, vol. 1, pp. 42–49, 2009.

6. P. Wang, “Experience-grounded semantics: a theory for intelligent systems,” Cognitive
Systems Research, vol. 6, no. 4, pp. 282–302, 2005.

7. T. Ziemke, “Rethinking grounding,” in Understanding representation in the cognitive
sciences (M. P. A. Riegler and A. von Stein, eds.), (New York), pp. 177–190, Kluwer
Academic/Plenum Publishers, 1999.

8. K. J. Devlin, Introduction to mathematical thinking. Keith Devlin, 2012.
9. J. H. Fetzer, Artificial Intelligence: Its Scope and Limits. Springer Netherlands, 1990.

10. S. A. Jackson and N. E. Sharkey, “Grounding computational engines,” in Integration
of Natural Language and Vision Processing (P. Mc Kevitt, ed.), pp. 167–184, Springer
Netherlands, 1996.

11. A. Gomes, R. Gudwin, C. El-Hani, and J. Queiroz, “Towards the emergence of meaning
processes in computers from Peircean semiotics,” Mind and Society: Cognitive Studies
in Economics and Social Sciences, vol. 6, pp. 173–187, November 2007.

12. A. Meystel, “Multiresolutional semiotic systems,” in Proc. of the IEEE Int. Symp. on
Intelligent Control/Intelligent Systems and Semiotics, pp. 198–202, 1999.

13. P. Vogt, “The physical symbol grounding problem,” Cognitive Systems Research, vol. 3,
no. 3, pp. 429–457, 2002.

14. B. B. Rieger, “Semiotics and computational linguistics. On semiotic cognitive informa-
tion processing,” in Computing with words in information/intelligent systems (L. A.
Zadeh and J. Kacprzyk, eds.), (Heidelberg, Germany), pp. 93–118, Physica, 1999.

15. B. Bloom, ed., Taxonomy of educational objectives: Book I, cognitive domain. New
York: Longman Green, 1956.

16. L. Franco and S. A. Cannas, “Solving arithmetic problems using feed-forward neural
networks,” Neurocomputing, vol. 18, pp. 61–79, 1998.

17. Y. Hoshen and S. Peleg, “Visual learning of arithmetic operations,” CoRR,
vol. abs/1506.02264, 2015.

18. D. Hofstadter, “How Raymond Smullyan inspired my 1112-year-old self,” in Four Lives:
a Celebration of Raymond Smullyan (R. Smullyan and J. Rosenhouse, eds.), Dover
Publications, 2014.

19. P. Schweizer, “Physical instantiation and the propositional attitudes,” Cognitive Com-
putation, vol. 4, pp. 226–235, 2012.

20. D. Kazakov, “The self-cognisant robot,” Cognitive Computation, vol. 4, pp. 347–353,
2012.

38 Valerio Targon

21. P. Wang, “Embodiment: does a laptop have a body?,” in Proc. of AGI Conference,
(Arlington, Virginia, USA), pp. 174–179, March 2009.

22. F. de Saussure, Grundfragen der allgemeinen Sprachwissenschaft. Berlin: de Gruyter,
1915. ed. Charles Bally unter Mitw. von Albert Riedlinger, translator Herman Lommel
(2001).

23. L. Wall, Perl Language Reference Manual - for Perl version 5.12.1. Network Theory
Ltd., 2010.

24. R. Burch, “Charles Sanders Peirce,” in The Stanford Encyclopedia of Philosophy (E. N.
Zalta, ed.), Aug. 2010. online; accessed Apr-2015.

25. E. Nozawa, “Peircean semeiotic - a 21st century scientific methodology,” in Proc. of the
Int. Symp. on Collaborative Technologies and Systems, (Orlando, FL, USA), pp. 224–
235, May 2007.

26. R. Barthes, Elements of Semiology. London: Jonathan Cape, 1964. trans. Lavers A and
Smith C (1967).

27. B. B. Rieger, “Computing fuzzy semantic granules from natural language texts. A
computational semiotics approach to understanding word meanings,” in Proc. of the
IASTED Int. Conf. on Artificial Intelligence and Soft Computing (M. Hamza, ed.),
(Honolulu, Hawaii, USA), pp. 475–479, August 1999.

28. P. Berkhin, “Survey of clustering data mining techniques,” tech. rep., Accrue Software,
Inc., 2002.

29. P. Ernest, “A semiotic perspective of mathematical activity: The case of number,”
Educational Studies in Mathematics, vol. 61, pp. 67–101, Feb. 2006.

30. J. Goguen, “An introduction to algebraic semiotics, with applications to user interface
design,” in Computation for Metaphor, Analogy and Agents (C. Nehaniv, ed.), pp. 242–
291, Springer Lecture Notes in Artificial Intelligence, 1999.

31. K. Lengnink and D. Schlimm, “Learning and understanding numeral systems: Semantic
aspects of number representations from an educational perspective,” in Philosophy of
Mathematics: Sociological Aspects and Mathematical Practice (B. Löwe and T. Müller,
eds.), pp. 235–264, London College Publications, 2010.

32. P. Thagard, “Abductive inference: from philosophical analysis to neural mechanisms,”
in Inductive Reasoning: Cognitive, Mathematical, and Neuroscientific Approaches
(A. Feeney and E. Heit, eds.), (Cambridge), pp. 226–247, Cambridge University Press,
2007.

33. B. Russell, The Problems of Philosophy. Oxford University Press, 1959.
34. T. M. Mitchell, “The need for biases in learning generalizations,” in Readings in Machine

Learning (J. W. Shavlik and T. G. Dietterich, eds.), pp. 184–191, Morgan Kauffman,
1980.

35. S. J. Nasuto, J. M. Bishop, E. B. Roesch, and M. C. Spencer, “Zombie mouse in a
Chinese room,” Philosophy & Technology, vol. 28, pp. 209–223, June 2015.

36. P. Konderak, “On a cognitive model of semiosis,” Studies in Logic, Grammar and
Rhetoric, vol. 40, pp. 129–144, 2015.

37. S. Colton, “Refactorable numbers: a machine invention,” Journal of Integer Sequences,
vol. 2, 1999.

38. A. D’Ulizia, F. Ferri, and P. Grifoni, “A survey of grammatical inference methods for
natural language learning,” Artificial Intelligence Review, vol. 36, no. 1, pp. 1–27, 2011.

39. Z. S. Harris, “Distributional structure,” Word, vol. 10, pp. 146–162, 1954.
40. S. M. Lamb, “On the mechanization of syntactic analysis,” in 1961 Conference on Ma-

chine Translation of Languages and Applied Language Analysis, Vol. 2 of National
Physical Laboratory Symposium No. 13, (London), pp. 674–685, Her Majesty’s Sta-
tionery Office, 1961.

41. Z. Solan, D. Horn, E. Ruppin, and S. Edelman, “Unsupervised learning of natural
languages,” Procs. of the National Academy of Sciences, vol. 102, no. 33, pp. 11629–
11634, 2005.

42. T. Ionin and O. Matushansky, “The composition of complex cardinals,” Journal of
Semantics, vol. 23, pp. 315–360, Nov 2006.

43. R. Sinatra, D. Condorelli, and V. Latora, “Networks of motifs from sequences of sym-
bols,” Phys. Rev. Lett., vol. 105, p. 178702, Oct 2010.

